北京师范大学全球变化与地球系统科学研究院
北京师范大学全球变化与地球系统科学研究院
   
当前位置: 首页»研究生培养» 导师简介 晏星 发布时间:Wed Mar 21 15:08:00 CST 2018

个人简介

晏星,副教授,硕士生导师。香港理工大学摄影测量与遥感专业博士,并在该校开展博士后研究工作1年;2015-2016, 美国马里兰大学大气海洋科学系访问博士。主要研究方向包括:大气环境遥感、人工智能解译与应用等。发表论文50余篇,SCI论文30余篇,其中第一作者/通讯作者22篇。近年来研究工作主要集中在细模态气溶胶遥感反演算法,PM2.5实时监测,可解释性深度学习模型的构建与应用等领域,相关研究相继发表在Remote Sensing of Environment、Environment International、Environmental Pollution、Atmospheric Environment、Atmospheric Research、Science of Total Environment等SCI刊物上。主持包括国家自然基金青年项目,北京市自然基金面上项目,参与国家重点研发计划等项目。担任Journal of Remote Sensing首届青年编委,同时担任Remote Sensing of Environment, The Lancet Planetary Health,Atmospheric Environment,Journal of Geophysical Research: Atmosphere等期刊审稿人。

主要研究内容

大气环境遥感            
GIS在环境研究中的应用            
深度学习模型的回归与可解释性问题

代表性论著

可解释性深度学习模型研发与应用:            
1.Yan, X.*,Zang, Z., Jiang, Y., Shi, W., Guo, Y., Li, D., Zhao, C., Husi, L. (2021). A Spatial-Temporal Interpretable Deep Learning Model for Improving Interpretability and Predictive Accuracy of Satellite-based PM2.5. Environmental Pollution, 273, 116459.            
2.Yan, X., Zang, Z., Zhao, C.*, Husi, L. (2021). Understanding global changes in fine-mode aerosols during 2008–2017 using statistical methods and deep learning approach. Environment International, 149,106392.            
3.Zang, Z., Guo, Y., Jiang, Y., Chen, Z., Li, D., Shi, W., & Yan, X.* (2021). Tree-Based Ensemble Deep Learning Model for Spatiotemporal Surface Ozone (O3) Prediction and Interpretation. International Journal of Applied Earth Observation and Geoinformation, 103, 102516.            
4.Yan, X.,Zang, Z.,Luo, N., Jiang, Y., & Li, Z.*(2020). New Interpretable Deep Learning Model to Monitor Real-Time PM2.5 Concentrations from Satellite Data. Environment International, 144,106060.            
5.Yan, X., Liang, C., Jiang, Y., Luo, N., Zang, Z., & Li, Z.* (2020). A Deep Learning Approach to Improve the Retrieval of Temperature and Humidity Profiles From a Ground-Based Microwave Radiometer. IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 12, pp. 8427-8437            
细模态气溶胶遥感反演研究:            
6.Yan, X., Li, Z.*, Shi, W., Luo, N., Wu, T., & Zhao, W. (2017). An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness, part 1: algorithm development. Remote Sensing of Environment, 192, 87-97.            
7.Yan, X., Li, Z.*, Luo, N., Shi, W., Zhao, W., Yang, X., Liang, C., Zhang, F. & Cribb, M. (2019). An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness. Part 2: Application and validation in Asia. Remote Sensing of Environment, 222, 90-103.            
8.Yan, X., Zang, Z., Li, Z.*, Luo, N., Zuo, C., Jiang, Y., Li, D., Guo, Y., Zhao, W., Shi, W., and Cribb, M.: A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches, Earth System Science Data, 2022, 14(3): 1193-1213.            
9.Yan, X., Zang, Z., Liang, C., Luo, N., Ren, R., Cribb, M., & Li, Z.* (2021). New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals. Environmental Pollution, 276, 116707.            
10.Liang, C., Zang, Z., Li, Z., & Yan, X.* (2021). An Improved Global Land Anthropogenic Aerosol Product Based on Satellite Retrievals From 2008 to 2016. IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 6, pp. 944-948.

学生培养情况:

陈嘉懿,2022级硕士            
左晨,2021级硕士            
李丹,2020级硕士            
郭昱杉,2020级硕士            
臧洲,2019级硕士(加拿大多伦多大学攻读博士学位,学校全额奖学金)            
梁晨,2017级硕士(联合培养,复旦大学攻读博士学位)

联系方式:

Email:yanxing@bnu.edu.cn