
2 Simulation of multisite precipitation using an extended

3 chain-dependent process

4 Xiaogu Zheng,1,2 James Renwick,1 and Anthony Clark1

5 Received 15 October 2008; revised 13 May 2009; accepted 12 August 2009; published XX Month 2009.

6 [1] The chain-dependent process is a popular stochastic model for precipitation sequence
7 data. In this paper, the effect of daily regional precipitation occurrence is incorporated into
8 the stochastic model. This model is applied to analyze the daily precipitation at a small
9 number of sites in the upper Waitaki catchment, New Zealand. In this case study, the
10 probability distributions of daily precipitation occurrence and intensity, spatial
11 dependences, and the relation between precipitation and atmospheric forcings are
12 simulated quite well. Specifically, some behaviors which are not well modeled by existing
13 models, such as the extremal behavior of daily precipitation intensity, the lag 1 cross
14 correlation of daily precipitation occurrence, spatial intermittency, and spatial correlation
15 of seasonal precipitation totals, are significantly improved. Moreover, a new and simpler
16 approach is proposed which successfully eliminates overdispersion, i.e., underestimation
17 of the variance of seasonal precipitation totals.

19 Citation: Zheng, X., J. Renwick, and A. Clark (2009), Simulation of multisite precipitation using an extended chain-dependent

20 process, Water Resour. Res., 45, XXXXXX, doi:10.1029/2008WR007526.

22 1. Introduction

23 [2] Stochastic models for observed precipitation data
24 sequences are useful in applications such as drainage system
25 design and hydrological design. They make up the most
26 important step in construction of weather generators, which
27 have wide applications in agriculture and ecosystem simu-
28 lations [Richardson, 1981] and have application in climate
29 change studies [Wilks, 1992; Furrer and Katz, 2007;
30 Brissette et al., 2007]. Although much progress has been
31 achieved in the development of precipitation simulation
32 tools, current challenges include the accurate representa-
33 tion of extremal behavior, the generation of multisite
34 sequences with realistic spatial dependence, the need to
35 represent realistic levels of interannual variability in the
36 generated sequences, and the representation of complex
37 dynamical structures within a relatively cheap computa-
38 tional framework [e.g., Wheater et al., 2005].
39 [3] Katz [1977] proposed a stochastic model for single-
40 site precipitation data called a chain-dependent process.
41 Precipitation occurrence is modeled as a first-order Markov
42 chain, and precipitation intensity is simulated using a
43 power-transformed Gaussian distribution. During the
44 30 years since Katz introduced it, this stochastic precipita-
45 tion model has been improved considerably. First, external
46 forcing, internal cycles, and trends were incorporated by
47 introducing threshold models [Katz and Parlange, 1993]
48 and generalized linear models [e.g., Furrer and Katz, 2007].
49 Overdispersion was eliminated by introducing mixture

50models [e.g., Katz and Zheng, 1999; Zheng and Katz,
512008a] and other approaches [e.g., Katz and Parlange,
521998]. Several approaches for modeling the spatial depen-
53dence of precipitation were also proposed [Wilks, 1998;
54Zheng and Katz, 2008b].
55[4] Despite all of this progress, the traditional chain-
56dependent process still has considerable shortcomings.
57First, it appears that the extremal behavior of precipitation
58is poorly modeled. It is widely believed that the assumption
59of a power-transformed Gaussian distribution is largely
60responsible. Use of other distributions, such as the mixture
61of the exponential [Wilks, 1998; Brissette et al., 2007] and
62the gamma distribution [Furrer and Katz, 2007], has
63brought about some improvements, but extremal behavior
64is still underestimated. Second, spatial dependence is not
65well modeled. Specifically, spatial intermittence [Wilks,
661998] is still significant, and the lag 1 cross correlations
67of daily precipitation occurrence are often significantly
68underestimated [Wilks, 1998]. In this paper, we will further
69show that traditional chain-dependent models tend to un-
70derestimate the spatial dependence of seasonal precipitation
71totals.
72[5] A possible reason for the existing chain-dependent
73process model not simulating these properties well is that
74the model is oversimplified. In fact, the existing multisite
75chain-dependent process models [e.g., Zheng and Katz,
762008b] assume that the marginal precipitation distribution
77at a single site is determined by the data at that site only and
78is independent of precipitation occurrences at other sites.
79However, multisite precipitation in a region is often forced
80by the same atmospheric circulation feature. So the distri-
81butions of occurrence and intensity at any single site are
82likely related to the precipitation occurrences at other sites.
83[6] In this study, the traditional chain-dependent process
84is extended to include an index which represents the
85effect of regional precipitation occurrence for modeling
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86 both precipitation occurrence and intensity. Specifically,
87 the precipitation intensity is still assumed to be power-
88 transformed Gaussian, but its error variance is dependent
89 on the precipitation occurrences at neighboring sites. We
90 will show, through a case study, that the extended chain-
91 dependent process can significantly improve the simulation
92 of extremal behavior, spatial dependence, and interannual
93 variability. Atmospheric forcing can be easily incorporated
94 into the new model. Furthermore, overdispersion can be
95 eliminated by introducing a random seasonal forcing.
96 [7] The paper is arranged as follows. The extended chain-
97 dependent process is introduced in section 2. Section 3
98 describes the case study of a long-term daily precipitation
99 data series using the proposed model. Finally, the discussion
100 on the extended model and our conclusions are given in
101 section 4.

102 2. Methodology

103 [8] Let Jt = (Jt(1), . . .Jt(M)) denote daily multisite pre-
104 cipitation occurrences (i.e., Jt(m) = 1 indicates a ‘‘wet day’’
105 and Jt(m) = 0 indicates a ‘‘dry day’’), where t = (1, . . ., T) is
106 a day within a season (for example, December–February) in
107 a year and m(=1, . . ., M) is a geographic location. Let xt
108 denote a forcing variable on day t.
109 [9] To model daily precipitation at a single site, Katz
110 [1977] introduced the chain-dependent process, and
111 Zheng and Katz [2008a] introduced the generalized
112 chain-dependent process. The main innovation of the new
113 stochastic model proposed in this study is to introduce the
114 following index into the generalized chain-dependent process,

Kt mð Þ �
1

M � 1

X
m0 6¼m

Jt m
0ð Þc m0;mð Þ; ð1Þ

115116 where c(m0, m) is the correlation of precipitation occurrence
117 between site pair m0 and m, which can be estimated by
118 observations. Kt(m) is referred to as the effect of regional
119 precipitation occurrences around site m. A larger Kt(m)
120 indicates more wet sites around the site m.
121 [10] For the new model, the conditional probability of
122 daily precipitation occurrences at a single site given the
123 multisite precipitation occurrence on the previous day is
124 assumed to be the logistic regression form

Pr Jt mð Þ ¼ 1jJt�1ð Þ ¼
1� 1= 1þ exp a0 mð Þ þ a1 mð ÞKt�1 mð Þ þ a2 mð Þxtð Þ½ �Jt�1 mð Þ ¼ 0

Pr Jt mð Þ ¼ 1jJt�1ð Þ ¼
1� 1= 1þ exp b0 mð Þ þ b1 mð ÞKt�1 mð Þ þ b2 mð Þxtð Þ½ �Jt�1 mð Þ ¼ 1;

ð2Þ

125126 where Pr indicates the probability function. Since a larger
127 Kt-1(m) indicates more wet sites around site m on the
128 previous day, the site m is more likely to be wet on day t
129 because of day-to-day persistence of atmospheric circula-
130 tion. Therefore, the parameters a1(m) and b1(m) are
131 expected to be positive.
132 [11] Let Rt(m) denote daily precipitation amounts on day t
133 and at site m. It is further assumed that on a wet day (i.e.,
134 Jt(m) = 1), the transformed variable Rt

q(m)(m) has a Gaussian
135 distribution. The values q = 1/2, 1/3, and 1/4 are commonly

136employed to account for the high degree of positive skew-
137ness in the distribution of daily precipitation amounts. In
138this study, q(m) is initially assigned to be 1/4 and later may
139be adjusted to fit the extremes of daily precipitation inten-
140sity at individual sites. Moreover, the mean of Rt

q(m)(m) is
141assumed to be

Et mð Þ �
m0 mð Þ þ m1 mð ÞKt mð Þ þ m2 mð ÞKt�1 mð Þ þ m3 mð Þxt þ m mð Þgt ;

ð3Þ

142143where gt is a seasonal random Gaussian variable with zero
144mean and unit variance, which remains a constant over a
145season and is statistically independent with respect to
146season. The standard deviation of Rt

q(m)(m) is assumed to be

St mð Þ � s0 mð Þ þ s1 mð ÞKt mð Þ: ð4Þ

149[12] To investigate the relation between Kt(m) and
150Rt

q(m)(m), a scatterplot of their values for a site (i.e., Franz
151Josef; see Figure 1) is shown in Figure 2. Figure 2 shows
152that Kt(m) and Rt

q(m)(m) are positively correlated. Hence,
153m1(m) is expected to be positive. Figure 2 also shows that as
154Kt(m) increases, the error in Rt

q(m)(m) expands. Therefore,
155the standard deviation of Rt

q(m)(m) is assumed to be in the
156linear form of (4), and s1(m) is expected to be positive.
157Parameters a2(m), b2(m), and m3(m) represent the effect of a
158single atmospheric forcing xt. Finally, m(m) gt is a seasonal
159random variable which forces the variance of simulated
160seasonal precipitation total close to that observed.
161[13] Equations (1)– (4) define a daily precipitation
162model which we referred to as the extended chain-depen-
163dent process forced by xt and seasonal random forcing gt
164because under the constraints a1 = a2 = 0, b1 = b2 = 0, m1 =
165m2 = m3 = m4 = 0, and s1 = 0, it is a standard multisite chain-
166dependent process [Zheng and Katz, 2008b]. A major
167difference between a multisite chain-dependent process
168and the extended chain-dependent process is that for the
169former model, the marginal probability distribution func-
170tions of precipitation occurrence and precipitation intensity
171are independent of the precipitation occurrences at other
172sites. This is not the case for the latter model, as Kt(m) is
173related to the precipitation occurrence around site m.
174[14] Practical estimation approaches for a0, a1, a2, b0,
175b1, and b2 are documented in Appendix A, and practical
176estimation approaches for m0, m1, m2, m3, and m are docu-
177mented in Appendix B.
178[15] In generating a multisite precipitation time series, we
179further generate standard Gaussian vectors {Wt(1), . . .,
180Wt(M)} and {Zt(1), . . ., Zt(M)} for precipitation occurrence
181and intensity, respectively, and a standard Gaussian random
182variable gt, which is unchanged within every season. To
183correctly simulate the spatial dependence of precipitation
184occurrence and of precipitation intensity, the {Wt(1), . . .,
185Wt(M)} and {Zt(1), . . ., Zt(M)} must be spatially correlated
186[e.g., Wilks, 1998]; our methodologies for estimation of the
187spatial correlation coefficients are documented in Appendix
188D. Moreover, {Wt(1), . . .,Wt(M)}, {Zt(1), . . ., Zt(M)}, and gt
189are statistically independent of each other and of day t.
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Figure 1. The geographical features of the Waitaki catchment, Southland, New Zealand.
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190 [16] Knowing the estimated parameters and the generated
191 random fields, multisite precipitation time series can be
192 generated by Monte Carlo simulation (Appendix C).

193 3. A Simulation Study

194 [17] The upper Waitaki catchment is situated in and east
195 of the Southern Alps, South Island, New Zealand. There are
196 three lakes: Lake Tekapo, Lake Pukaki, and Lake Ohau (see
197 Figure 1). These lakes supply water for hydroelectric power
198 generation; they provide about one fourth of the electricity
199 generation capacity in New Zealand. For better management
200 of these water resources, the hydrological catchment model
201 TOPNET [Bandaragoda et al., 2004] is used to simulate the
202 inflow into the lakes and then the outflow from the lakes.
203 Since daily precipitation is the most important forcing for
204 TOPNET, we aim to simulate an ensemble of regional daily
205 precipitation to force TOPNET for the upper Waitaki
206 catchment.
207 [18] The simulated daily precipitation must correctly
208 represent the spatial variability at basin scale and the
209 temporal variability at all time scales, specifically, the
210 decadal time scale. In order to estimate the rainfall variabil-
211 ity over the next 2–3 decades, a climate variable is needed
212 that is both predictable and significantly associated with
213 precipitation on a decadal time scale. Fortunately, the
214 Interdecadal Pacific Oscillation (IPO) may be such a

215climate variable. The IPO has significant impacts on
216precipitation and river flows in the upper Waitaki catchment,
217particularly for the austral summer season (December–
218January–February (DJF)). The negative IPO phase is gen-
219erally associated with lower rainfall and inflows, and the
220positive IPO phase is generally associated with higher
221rainfall and inflows [Zheng and Thompson, 2007]. For this
222reason, the forcing variable xt used in this study is the low-
223frequency IPO index, provided by the Hadley Centre of the
224United Kingdom Meteorological Office [Folland et al.,
2251999]. It is derived from the third empirical orthogonal
226function pattern of 13 year low-pass-filtered global SST
227[see Zheng and Thompson, 2007, Figure 2].
228[19] There are only four rainfall stations in or near the
229upper Waitaki catchment with records covering the period
2301953–2000: Lake Tekapo, Lake Ohau, Mount Cook, and
231Franz Josef (see Figure 1 for locations). Their record lengths
232cover the period 1953–2000, which roughly spans one
233complete cycle of the IPO, i.e., one positive and negative
234phase. The daily precipitation has been power transformed.
235Values for q of 1/4, 1/4, 1/4, and 1/3 were adopted for Lake
236Tekapo, Lake Ohau, Mount Cook, and Franz Josef, respec-
237tively. All these values were initially chosen as 1/4. How-
238ever, for Franz Josef, it was found that the tail of daily
239precipitation intensity is overestimated for q = 1/4. This may
240be due to Franz Josef being the only station west of the main
241divide, so larger rainfalls appear more frequently. Awet day,
242in the context of this study, occurs when at least 1 mm of
243precipitation was recorded by the rain gauge; otherwise, the
244day is treated as dry.
245[20] A hierarchy of four models was fitted to the austral
246summer season daily precipitation for the four long-term
247rainfall stations: (1) the multisite chain-dependent process,
248(2) the extended chain-dependent process, (3) the extended
249chain-dependent processes forced by the IPO, and (4) the
250extended chain-dependent processes forced by IPO and
251seasonal random forcing. Their names and the constraints
252on the parameters are listed in Table 1. We will investigate
253model 4 in the simulation, while models 1–3 are treated as
254alternatives for comparison. All models are fitted to the
255daily precipitation at the four sites during austral summer
256for the period 1953–2000. On the basis of the fitted
257parameters (shown in Tables 2 and 3) and the observed
258seasonal IPO index, 100 independent simulations of the DJF

Figure 2. Plot of the effect of regional precipitation
occurrences for all wet days (i.e., Kt, equation (1)) versus
the cube root of daily precipitation intensity at Franz Josef
(see Figure 1).

t1.1 Table 1. Model Hierarchy

Name Constraints on Parameterst1.2

Model 1: multisite
chain-dependent
process

a1 = a2 = 0, b1 = b2 = 0,
m1 = m2 = m3 = m = 0,
s1 = 0t1.3

Model 2: extended
chain-dependent
process

a2 = b2 = m3 = m = 0t1.4

Model 3: extended
chain-dependent
process forced by IPO

m = 0t1.5

Model 4: extended
chain-dependent
process forced by IPO
and random seasonal
forcing

nonet1.6

t2.1Table 2. Estimated Parameters for Model 4 for Single Sitea

Site m t2.2

1 2 3 4 t2.3

a0 (m) �1.222 �2.365 �2.265 �0.746 t2.4
a1 (m) 1.268 2.225 1.199 0.000 t2.5
a2 (m) 0.089 �0.097 0.000 0.093 t2.6
b0 (m) �0.198 �1.739 �1.531 0.477 t2.7
b1 (m) 0.557 1.227 0.840 0.243 t2.8
b2 (m) 0.113 0.000 0.000 0.104 t2.9
m0 (m) 1.275 1.451 1.198 1.694 t2.10
m1 (m) 0.752 0.261 0.268 1.361 t2.11
m2 (m) 0.000 0.112 0.052 0.000 t2.12
m3 (m) 0.030 0.031 0.000 0.067 t2.13
m (m) 0.200 0.100 0.100 0.200 t2.14
s0 (m) 0.427 0.398 0.271 0.587 t2.15
s1 (m) 0.189 0.025 0.103 0.534 t2.16

aThe site numbers are shown in Figure 3. t2.17
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259 daily precipitation over the 47 year period are generated
260 using the four models.

261 3.1. Daily Precipitation Intensity

262 [21] The Q-Q plots of observed daily precipitation inten-
263 sity versus that simulated for each site and each model are
264 shown in Figure 3. Generally speaking, model 1 under-
265 estimates the distribution, specifically, for the extremes. All
266 other models (2–4) simulate the distribution of daily
267 precipitation intensity quite well.
268 [22] The Q-Q plots of observed regional daily precipita-
269 tion totals versus those simulated using models 1–4 are
270 shown in Figure 4. Figure 4 shows that models 2–4
271 simulate the distribution quite well, while model 1 tends
272 to underestimate the distribution, specifically, for extremal
273 behavior.

2753.2. Spatial Dependence of Daily Precipitation

276[23] The correlations of the two Gaussian random fields
277are estimated using model 1 (see Appendix D) and applied
278in the simulation study using models 2–4. For all models,
279the spatial dependence of precipitation occurrence is over-
280estimated, and the spatial dependence of precipitation
281intensity is underestimated, except the spatial depen-
282dence of precipitation occurrence for model 1. However,
283after the initially estimated correlations are adjusted (see
284Appendix D), the biases of the precipitation occurrence
285and intensity are strongly reduced. The final estimated
286correlations of the two Gaussian random fields are
287shown in Table 3.
288[24] The lag 1 cross-correlation coefficients of precipita-
289tion occurrence observed and simulated are shown in
290Table 4. The coefficients simulated using models 2–4 are
291very close to the observed. However, the coefficients
292simulated by model 1 are negatively biased. The improve-
293ment is mainly to the east of the main divide. This is
294consistent with the fact that a1(m) and b1(m) are much more
295significant to the east of the main divide than to the west
296(see Table 2).
297[25] Accurate simulation of the dependence between
298precipitation intensity and occurrence at other sites is
299important in several applications, for example, drainage
300system design and simulation of regional agricultural yields.
301To estimate whether the spatial intermittence problem
302[Wilks, 1998] is handled appropriately, Wilks [1998] defined

t3.1 Table 3. Estimated Spatial Correlation for the Gaussian Fields

{Wt (m), m = 1, . . ., 4} and {Zt (m), m = 1, . . ., 4}a

1 2 3 4t3.2

1 1 0.712 0.822 0.897t3.3
2 0.526 1 0.711 0.623t3.4
3 0.363 0.492 1 0.714t3.5
4 0.742 0.397 0.274 1t3.6

aThe site numbers are shown in Figure 3. Correlations for {Wt (m), m = 1,
. . ., 4} are in the top right, and correlations for {Zt (m), m = 1, . . ., 4} are in
the bottom left.t3.7

Figure 3. Q-Q plots of observed versus simulated daily precipitation intensity. Dotted line is model 1,
dashed line is model 2, and open symbols are model 4. The Q-Q plot for model 3 (not show here) is very
close to that for model 4.
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329 an index of the spatial intermittence called the continuity
330 ratio between two sites m and m0:

C m;m0ð Þ � E Rt mð Þ Jt mð Þ ¼ 1; Jt m
0ð Þ ¼ 0jð Þ=

E Rt mð Þ Jt mð Þ ¼ 1; Jt m
0ð Þ ¼ 1jð Þ: ð5Þ

331332 It is a measure of the dependence of the mean of
333 precipitation intensity at site m on the precipitation
334 occurrence at site m0.
335 [26] Figure 5 shows the plots of the continuity ratios
336 observed versus simulated for all 12 site pairs. It shows that
337 the continuity ratios simulated by model 1 are all close to 1.
338 This indicates that, regardless of whether the other sites are
339 wet or dry, the mean of the precipitation intensity at any
340 single site is not changed much. However, this is not the
341 case for the observations. Figure 5 also shows that the
342 continuity ratios simulated using models 2–4 are quite
343 comparable to those observed.

345 3.3. Interannual Variability

346 [27] Correlations between seasonal precipitation totals
347 and the IPO index are shown in Table 5. The correlations
348 are reasonably significant, especially for Mount Cook and
349 Franz Josef (for the total of 47 samples, a correlation of 0.28
350 is at the 5% significant level, and a correlation of 0.35 is at
351 the 1% significant level). While the correlation was simu-
352 lated quite well by models 3 and 4, it was completely
353 missed by models 1 and 2.
354 [28] Spatial correlations of seasonal precipitation totals
355 for all site pairs are shown in Table 6. The correlation is

356very strong in the observations. The correlation simulated
357using model 1 is weak (negatively biased). The correlations
358simulated by models 2 and 3 are improved but still fall short
359of the observed. However, the correlation simulated by
360model 4 is further improved and is close to that observed.
361[29] Standard deviations of seasonal precipitation totals
362are shown in Table 7. Table 7 shows that the standard
363deviations are significantly underestimated by model 1. This
364phenomenon is referred to as overdispersion [Katz and
365Zheng, 1999]. Overdispersion is reduced to some extent
366by model 2 and is further eliminated by model 3, but not
367completely. Finally, the overdispersion is almost fully
368eliminated by model 4.
369[30] Q-Q plots of the regional seasonal precipitation totals
370simulated by models 1–4 are shown in Figure 6. Figure 6
371shows that model 1 tends to underestimate the wet extremes

Figure 4. Q-Q plots of observed regional daily precipitation total versus that simulated.

t4.1Table 4. Lag 1 Cross Correlation of Daily Precipitation

Occurrencea

Site Pair Model 1 Model 2 Model 3 Model 4 Observed t4.2

1–2 0.06 0.31 0.31 0.31 0.32 t4.3
1–3 0.08 0.22 0.22 0.22 0.21 t4.4
1–4 0.21 0.22 0.22 0.22 0.24 t4.5
2–3 0.09 0.18 0.18 0.18 0.16 t4.6
2–4 0.11 0.13 0.13 0.13 0.12 t4.7
3–4 0.12 0.14 0.14 0.14 0.13 t4.8
Average 0.11 0.20 0.20 0.20 0.20 t4.9

aThe site numbers are shown in Figure 3. t4.10
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381 of total precipitation by about 1000 mm and to overestimate
383 the dry extremes by about 500 mm. The situation is
384 progressively improved from model 2 to model 3 and is
385 modeled quite well by model 4. Zheng and Katz [2008a]
386 showed that the probability distribution of the seasonal
387 precipitation totals can be correctly simulated by the mix-
388 ture chain-dependent process. Here we provide an alterna-
389 tive model to eliminate the overdispersion.
390 [31] The distributions of dry runs and wet spells of
391 precipitation were also examined. Generally speaking, the
392 distributions simulated using all models 1–4 coincide well
393 with the observed.

395 4. Discussion and Conclusions

396 [32] We have demonstrated several advantages of the
397 extended chain-dependent process over the multisite
398 chain-dependent process. To investigate the roles played
399 by individual parameters, these parameters are dropped in

400turn from the extended chain-dependent process forced by
401IPO and seasonal random forcing, and the analysis in
402section 3 is repeated. As a result, the following conclusions
403emerge.
404[33] The parameter s1(m) plays the most important role in
405improving the extremal behavior of precipitation, suggest-
406ing some spatial coherence in extreme behavior. The
407parameters m1(m) and m2(m) also play some role. The
408intermittence problem can be solved only by introducing
409m1(m). The parameters a1(m) and b1(m) play the dominant
410role in correctly modeling the lag 1 cross correlation of
411daily precipitation occurrence. The parameters a1(m),
412b1(m), m1(m), and m(m) are all important for improving
413the spatial dependence of seasonal precipitation totals. The
414reason a1(m) and b1(m) played a role may be because of the
415dependence of seasonal totals on the daily lag 1 cross

Figure 5. Scatterplot of the continuity ratios of the observed versus those simulated.

t5.1 Table 5. Correlations Between Seasonal Precipitation Totals and

the IPO Indexa

Site Model 1 Model 2 Model 3 Model 4 Observedt5.2

Mt. Cook 0.02 0.02 0.33 0.24 0.29t5.3
Ohau 0.00 0.02 0.22 0.18 0.16t5.4
Tekapo 0.00 0.01 0.09 0.07 0.15t5.5
Franz Josef 0.00 0.02 0.42 0.36 0.40t5.6
Average 0.01 0.02 0.27 0.22 0.25t5.7

aThe site numbers are shown in Figure 3.t5.8

t6.1Table 6. Similar to Table 2, but for Cross Correlation of Seasonal

Precipitation Totals

Site Pair Model 1 Model 2 Model 3 Model 4 Observed t6.2

1–2 0.36 0.72 0.73 0.80 0.89 t6.3
1–3 0.29 0.61 0.60 0.71 0.73 t6.4
1–4 0.58 0.85 0.86 0.88 0.86 t6.5
2–3 0.35 0.65 0.65 0.74 0.88 t6.6
2–4 0.28 0.66 0.67 0.74 0.80 t6.7
3–4 0.24 0.58 0.57 0.66 0.66 t6.8
Average 0.35 0.68 0.68 0.76 0.80 t6.9
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416 precipitation field [e.g., Zheng, 1996], and a1(m) and b1(m)
417 help to improve the daily lag 1 spatial dependence.
418 Finally, as expected, m(m) plays the key role in eliminating
419 overdispersion.
420 [34] The cases when extremes are not well modeled by
421 stochastic precipitation models were often attributed to the
422 tails of statistical distributions not being heavy enough or
423 atmospheric forcing being neglected. In this case, the
424 general extreme value distribution is recommended for
425 modeling the extremal behavior of precipitation [e.g.,
426 Koutsoyiannis, 2004; Furrer and Katz, 2008]. In this
427 study, we showed that excluding the effect of the precip-
428 itation occurrence at the regional scale may be a major
429 reason for extremes being underestimated. As shown here,
430 when such an index is appropriately incorporated, the
431 extremes of precipitation can be modeled quite well, even

432using the power-transformed Gaussian distribution and
433without introducing any atmospheric forcing. Adjustment
434of the power transform parameter q would further improve
435the simulated extremal behavior. Moreover, by appropri-
436ately introducing spatial dependence of daily precipitation,
437extremes of the regional daily precipitation total can be
438correctly estimated (Figure 6).
439[35] All the improvement in extremal behavior and spatial
440dependence can be achieved by using precipitation data
441only, that is, by model 2, without any atmospheric forcing.
442Therefore, model 2 is useful because forcing is not always
443available or necessary, for example, in application to drain-
444age system design.
445[36] In this study, we have demonstrated that a single
446atmospheric forcing can be effectively modeled by assum-
447ing a2(m) 6¼ 0, b2(m) 6¼ 0, and m3(m) 6¼ 0. However, as with
448other rainfall generators based on generalized linear models
449[e.g., Furrer and Katz, 2007], this approach can be easily
450generalized to incorporate multiple atmospheric forcing
451variables, seasonal cycles, and trends.
452[37] In this study, the parameters are estimated in an ad
453hoc manner, and neither the robustness nor the precision of
454the estimates has been fully investigated. However, the
455results seem acceptable because all the basic statistics are
456correctly simulated with these parameters in this case study.
457In the future, we plan to further improve the parameter
458estimation and to investigate the impact of the ad hoc

t7.1 Table 7. Similar to Table 3, but for Standard Deviation of

Seasonal Precipitation Totals

Site Model 1 Model 2 Model 3 Model 4 Observedt7.2

Mt. Cook 281 339 361 502 495t7.3
Ohau 80 89 92 107 115t7.4
Tekapo 44 47 49 57 61t7.5
Franz Josef 316 382 424 483 528t7.6
Average 181 215 233 287 300t7.7

Figure 6. Q-Q plots of observed regional seasonal precipitation totals versus that simulated.
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459 estimation. We also plan to fit this model to precipitation
460 data at more sites, using more forcing data, to further test
461 the efficacy of the model. Specifically, we plan to use
462 atmospheric forcing generated from global circulation model
463 output to downscale climate change scenarios for estimation
464 of regional rainfall in impact studies.
465 [38] In conclusion, the introduction of a regional pre-
466 cipitation index into a multisite chain-dependent process
467 improved the simulation of extremes in rainfall intensity,
468 spatial correlations of occurrence, and seasonal totals. In
469 addition, introduction of atmospheric forcing, in this case
470 the IPO and random seasonal effects, led to a reduction in
471 overdispersion. The models investigated offer several advan-
472 tages over the traditional chain-dependent process. In this
473 case study, the new stochastic precipitation model signifi-
474 cantly improves the quality of precipitation simulation.

475 Appendix A: Estimation of a0(m), a1(m), a2(m),
476 b0(m), b1(m), and b2(m)

477 [39] Equation (2) is in a typical logistic regression form
478 [McCullagh and Nelder, 1989]. So a0(m), a1(m), and a2(m)
479 can be estimated using all the precipitation occurrence
480 observations where the previous day was dry. Similarly,
481 b0(m), b1(m), and b2(m) can be estimated using all the
482 precipitation occurrence observations where the previous
483 day was wet. In this study, they are estimated using the
484 function glm in the open source statistical package R.

485 Appendix B: Estimation of m0(m), m1(m), m2(m),
486 m3(m), s0(m), s1(m), and m(m)

487 [40] We have assumed that the power-transformed pre-
488 cipitation intensity Rt

q(m)(m) has a Gaussian distribution with
489 the mean represented by expression (3) and the standard
490 deviation represented by expression (4). Since there is a
491 random effect term gt in expression (3), Rt

q(m)(m) can be
492 modeled by a general linear mixed model [e.g., Jones, 1992,
493 chapter 2.1]. In principle, the parameters of Rt

q(m)(m) can be
494 estimated by the maximum likelihood estimation [see Jones,
495 1992, chapters 2.2–2.6]. However, the reason for introduc-
496 ing the random effect term gt here is to correctly estimate
497 the seasonal mean precipitation. Since the simulated sea-
498 sonal mean precipitation is not power transformed and is
499 related to the simulated precipitation occurrence, fitting the
500 general linear mixed model by the maximum likelihood
501 estimation may not achieve our goal.
502 [41] In this study, we use an alternative empirical approach
503 to estimate the parameters in expressions (3) and (4). Since
504 the random effect term gt is with mean zero, m0(m), m1(m),
505 m2(m), m3(m), s0(m), and s1(m) are estimated under the
506 assumption m(m) = 0. In this case, Rt

q(m)(m) has a Gaussian
507 distribution, and the �2 log likelihood function of Rt

q(m)(m)
508 on wet days is

L mð Þ �
X
t

Jt mð Þ ln s0 mð Þ þ s1 mð ÞKt mð Þð Þ2
h i(

� R
q
t mð Þ�m0 mð Þ�m1 mð ÞKt mð Þ�m2 mð ÞKt�1 mð Þ � m3 mð Þxtð Þ2

s0 mð Þ þ s1 mð ÞKt mð Þ½ �2

)
:

ðB1Þ

510In principle, the parameters can be estimated by minimizing
511function (B1). However, since there are six parameters in
512(B1), direct optimization may be difficult. For this reason,
513we use the following approximate estimation. First, m0(m),
514m1(m), m2(m), and m3(m) are estimated by the stepwise
515regression assuming Rt

q(m)(m) has constant error variance.
516Then s0(m) and s1(m) are estimated by minimizing (B1),
517but with m0(m), m1(m), m2(m), and m3(m) being fixed as
518estimated previously. In this study, the function nlminb in
519the open source statistical package R is applied for the
520optimization.
521[42] After the parameters m0(m), m1(m), m2(m), m3(m),
522s0(m), and s1(m) have been estimated, m(m) is determined
523by moment estimation. To obtain more details, we introduce
524the term m(m)gt into model 3 to force the variance of the
525simulated seasonal precipitation total close to that observed.
526For each site m, m(m) increases at step 0.05 from zero until
527the two variances become sufficiently close.

528Appendix C: Generating Multisite Precipitation

529[43] Knowing the generated spatially correlated random
530Gaussian fields {Wt(1), . . ., Wt(M)} and {Zt(1), . . ., Zt(M)}
531(see Appendix D) and initial occurrence states J0(m), m = 1,
532. . ., M, we can generate, by Monte Carlo simulation, a
533multisite rainfall time series iteratively with day t.

535C1. Occurrence

536[44] For every m = 1, . . ., M, construct the precipitation
537occurrences transition probability Pr(Jt(m) = 1jJt-1) using
538equation (2) (where Kt-1(m) has been constructed at previ-
539ous time step day t�1). Then the precipitation occurrence is
540constructed by using

Jt mð Þ ¼
1;F Wt mð Þð Þ � Pr Jt mð Þ ¼ 1jJt�1ð Þ
0;F Wt mð Þð Þ > Pr Jt mð Þ ¼ 1jJt�1ð Þ;

�
ðC1Þ

541542where F is the standard Gaussian probability distribution
543function, so F(Wt(m)) is a uniform random variable on the
544interval [0, 1]. In this study, F(Wt(m)) is calculated by using
545the function pnorm in the open source statistical package R.

546C2. Intensity

547[45] For every m = 1, . . ., M, construct the effect of
548regional precipitation occurrence on day t Kt(m) using
549equation (1). Then the precipitation intensity can be con-
550structed by using

R
q mð Þ
t mð Þ ¼ Jt mð Þ s0 mð Þ þ s1 mð ÞKt mð Þð ÞZt mð Þ þ m0 mð Þ½

þm1 mð ÞKt mð Þ þ m2 mð ÞKt�1 mð Þ þ m3 mð Þxt þ m mð Þgt�:
ðC2Þ

553Appendix D: Estimating Correlations of
554Gaussian Fields

555[46] In this study, the cross correlations of the Gaussian
556fields {Wt(1), . . ., Wt(M)} and {Zt(1), . . ., Zt(M)} are
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557 initially estimated under the constraintsa1 =a2 = 0, b1 = b2 =
558 0, m1 = m2 = m3 = m = 0, and s1 = 0 (i.e., model 1),
559 assuming the site-specific parameters q(m), a0(m), b0(m),
560 m0(m), and s0(m) are estimated using methodology docu-
561 mented in Appendixes A and B.
562 [47] The correlation between Zt(m) and Zt(n) is denoted
563 by y(m, n) and can be estimated as

ŷ m; nð Þ ¼

P
t:rt mð Þrt nð Þ>0

r
q mð Þ
t mð Þ � m̂0 mð Þ

� �
r
q nð Þ
t nð Þ � m̂0 nð Þ

� �
ŝ0 mð Þŝ0 nð Þ ;

ðD1Þ

565 where rt(m) is the observed precipitation intensity on day t
566 at site m [e.g., Zheng and Katz, 2008b].
567 [48] The correlation between Wt(m) and Wt(n) is denoted
568 by w(m, n) and can be estimated as follows. Note that
569 {Jy,t(m), Jy,t(n), t = 1, . . ., T} is a bivariate Markov chain
570 [Zheng and Katz, 2008b]. By equation (C1), the transition
571 probability from {Jt-1(m) = k, Jt-1(n) = k0} to {Jt(m) = j,
572 Jt(n) = j0} (denoted by Pkk0,jj

0(m, n)) is

Pkk 0;11 m; nð Þ ¼ Pr F Wt mð Þð Þ � Pk;1 mð Þ;F Wt nð Þð Þ � Pk 0 ;1 nð Þ
� �

;

ðD2Þ

Pkk0;10 m; nð Þ ¼ Pk;1 mð Þ � Pkk0;11 m; nð Þ; ðD3Þ

Pkk0 ;01 m; nð Þ ¼ Pk 0 ;1 nð Þ � Pkk 0;11 m; nð Þ; ðD4Þ

Pkk0;00 m; nð Þ ¼ 1� Pk;1 mð Þ � Pk 0;1 nð Þ þ Pkk 0;11 m; nð Þ: ðD5Þ

580 where Pk,j(m) denotes the transition probability from
581 {Jt-1(m) = k} to {Jt(m) = j}.
582 [49] By the ergodic theory of Markov chains [e.g., Feller,
583 1971], the bivariate invariant probability measure Pr (Jt-1(m) =
584 j, Jt-1(n) = j0) of the transition probability matrix P is the
585 last row ofAT (AAT)�1, where the partitioned matrixA= [I�
586 P, 1]; I is the identity matrix, and all elements of column
587 vector 1 are 1. Since P is uniquely determined by w(m, n),
588 the invariant probability measure Pr (Jt-1(m) = 1, Jt-1(n) = 1)
589 is uniquely determined. The function for calculating
590 multivariate Gaussian probability distribution (i.e., Pr in
591 equation (D2)) is available, for example, the function
592 dmvnorm in the librarymvtnorm of the open source statistical
593 package R. So, given w(m, n), Pr (Jt(m) = 1, Jt(n) = 1) can be
594 computed, and the modeled daily cross correlation of precip-
595 itation occurrence between site pair m and n is

C Jt mð Þ; Jt mð Þð Þ ¼
Pr Jt mð Þ ¼ 1; Jt nð Þ ¼ 1ð Þ � Pr Jt mð Þ ¼ 1ð ÞPr Jt nð Þ ¼ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr Jt mð Þ ¼ 1ð ÞPr Jt mð Þ ¼ 0ð Þ Pr Jt nð Þ ¼ 1ð ÞPr Jt nð Þ ¼ 0ð Þ

p :

ðD6Þ

597 Finally, w(m, n) is chosen such that the modeled cross
598 correlation (expression (D6)) is equal to the cross correlation
599 of the observed occurrence.

600[50] When the initially estimated correlations are applied
601to model 2, correlations of precipitation occurrence (inten-
602sity) are likely to be overestimated (underestimated). To
603correct this bias, for every site pair m and n, the initially
604estimated correlation between Wt(m) and Wt(n) is multiplied
605by the ratio of the correlation of the observed occurrence to
606the correlation of the simulated occurrence (see Appendix C)
607using model 2 with initially estimated correlations of
608{Wt(1), . . ., Wt(M)}. A similar approach can be applied
609to correct the bias of the initially estimated correlations of
610the Gaussian field {Zt(1), . . ., Zt(M)}.
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